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Mechanical and swelling measurements were carried out on samples of dicumyl-peroxide-crosslinked natural 
rubber. The balance of the elastic free energy and the mixing free energy at swelling equilibrium was used 
to calculate the value of the Flory-Huggins Z parameter for a series of crosslinked rubbers swollen in an 
excess of different solvents. The results show that X for the crosslinked rubber is greater than that of the 
uncrosslinked counterpart. Other evidence from the literature, based on swelling activity parameter 
measurements, which supports this conclusion, is discussed. We also find that the value ofz in the crosslinked 
rubber is a linear function of the crosslink density. We examine these results in the context of the Freed 
and Pesci lattice model. 
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I N T R O D U C T I O N  

The Frenkel -Flory-Rehner  hypothesis L2 states that in 
swelling of crosslinked networks the elastic contribution 
and the mixing contribution to the free energy are equal 
and additive. Then the chemical potential difference 
between the rubber-solvent  system and the pure solvent 
is written as2-5: 

(ill - #~) = (#1 - ~)mix -I- (/~1 -- ~)el  (la) 

At swelling equilibrium ( /~1- /~)  vanishes so that: 

(#1 - P])mix = - (Pl --/~])c, ( lb) 

It is generally accepted that the appropriate  expression 
for the mixing term is the Flory-Huggins  expression6'V: 

(/~1- #~))mix = RT[ ln(  1 --v2)--v2+zv~] (2) 

where v 2 is the volume fraction of rubber, X is the 
Flory-Huggins  polymer-solvent  interaction parameter,  
R is the gas constant and T is the absolute temperature. 
An important  point to be made here is that X is generally 
assumed to be the same for the crosslinked and uncross- 
linked rubbers, i.e. X~ =Z.-  The major  objective of this 
paper is to show that this is not the case and that X is a 
function of the crosslink density of the rubber. This is 
an extension and elaboration of work communicated 
previously 8. 

The elastic contribution to the chemical potential is 
usually expressed in terms of a molecular theory 1-~'9-13. 
Here, we avoid assuming a specific molecular model and 
simply measure the elastic strain energy density function 
of the crosslinked networks. There are two assumptions 
that we will need in doing this. First, we will assume the 
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validity of the Valanis-Lande114 hypothesis, that the 
strain energy density of the dry rubber can be represented 
as a separable function in the principal stretches: 

W(~-l, '~2, ~3)=w('~l)"~w('~2)'~'w(~3) (3) 

where the ),~ are the principal stretches, W is the strain 
energy density function and we will refer to w as the 
Valanis-Landel (VL) function. The VL function has been 
found to be an excellent representation of the dry state 
properties of rubber networks in a broad range of 
deformations and deformation geometries 15-1s. The 
second assumption is that the elastic strain energy density 
function which represents the properties of the rubber in 
the dry state also represents its properties in the swollen 
state at the appropriate state of stretch. This latter 
assumption is one of the fundamental premises of the 
Frenkel -Flory-Rehner  (FFR) hypothesis 1,2 and has been 
shown to be consistent with the experimental observations 
made in recent studies conducted in this laboratory 19,20 
In terms of the Valanis-LandeP ~ strain energy function 
we can express the elastic contribution to the chemical 
potential as: 

(]-/1 --/~/~)©1 = V1 wt(2s)/~.s 2 (4) 

where 1/1 is the molar  volume of the solvent, w' is the 
derivative of the VL function and A s = v 21/3 is the swelling 
deformation. 

In what follows we will describe experiments in which 
the elastic properties of the rubber in the dry state are 
determined from torsion and normal force measurements 
and the values of Zc are calculated by equating equation 
(2) with equation (4) and solving for Xc- The resulting 
values of Xc are dependent on the crosslink density of the 
rubber and it is found for six different solvents that this 
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dependence can be represented by the following linear 
equation: 

~o=~o+0qv (5) 

where Zo is the value of Z in the uncrosslinked rubber at 
the dilute solution limit for good solvents and at the limit 
of miscibility for poor or non-solvents. Furthermore, over 
the range of parameters studied we will show that the 
relation that describes the crosslink dependence of the 
value of X in the crosslinked systems can be written in a 
'universal' form, viz.: 

(X~- Xo)/Xo=O~v (6) 

where ot=cq/Zo is independent of the solvent. These 
findings will be discussed in terms of a recent theory of 
Freed and coworkers 21-25, which predicts a crosslink- 
dependent Z. 

Finally, we will also discuss the importance of the 
swelling activity parameter (defined as S=2 s ln(ac/a,), 
where 2s is as defined above and a¢ and au are the activities 
in the crosslinked and uncrosslinked rubbers, respectively) 
in testing theories of rubber elasticity and show that the 
data for S in the literature support the finding that Z for 
crosslinked rubber is different from X for uncrosslinked 
rubber. 

Table 1 Molecular weights of natural rubber prepolymer (after 
milling) and molecular weight between crosslinks, M c, of samples after 
crosslinking with dicumyl peroxide 

Prepolymer molecular 
Dicumyl weight" 

Sample peroxide M w Mcb 
designation (phr) (g mol - a ) Mw/M, (g tool - 1 ) 

APHR1 1 310000 2.8 21 800 
APHR2 2 310000 2.8 8 720 
APHR3 3 310 000 2.8 5 450 
APHR5 5 310000 2.8 3 115 
APHR7.5 7.5 230 000 2.4 2 020 
APHR10 10 310000 2.8 1 500 
APHR15 15 310000 2.8 550 

a From size exclusion chromatography in toluene using polystyrene 
calibration of columns. Universal calibration was used assuming the 
following Mark-Houwink parameters. Polystyrene in toluene: K = 
13.4x 10-3mlg  -1, a=0.71.  Natural rubber in toluene: K = 5 0 . 2 x  
10- 3 ml g -  1, a = 0.667 

b Calculated from the formula given by WoodZr: 

1/(2Me) = 3.6986(fp-0.31) x 10- 5 

M c is the molecular weight between crosslinks and fp is the parts 
dicumyl peroxide by mass per 100 parts of rubber. This assumes 
one dicumyl peroxide molecule reacts to form one crosslink. Because 
the dicumyl peroxide used contains =93% peroxide, fv is 0.93 times 
the value in the table 

EXPERIMENTAL METHODS 

Samples of natural rubber from National Bureau of 
Standards SRM 385 were mixed with dicumyl peroxide 
(Di-Cup T, Hercules Inc.)* by milling on a two-roll mill. 
The samples were then placed in a cylindrical mould 
1.27 em in diameter by 7 cm in length and cured at 149°C 
for 2 h. Crosslink density was varied by changing the 
amount of dicumyl peroxide added during milling. This 
varied from one part peroxide per hundred parts rubber 
(1 phr) to 15 phr. Crosslink density was calculated using 
W o o d ' s  26 equation relating the amount of decomposed 
peroxide to the molecular weight between crosslinks. The 
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Figure 1 Typical data for dicumyl-peroxide-crosslinked natural rub- 
bers showing variation of Valanis-Landel function derivative w ' (2 ) -  
w'(1)/2 with deformation 2 (from ref. 20) 

molecular weight of each milled rubber sample was 
obtained prior to crosslinking using size exclusion 
chromatography in toluene. The characteristics of the 
different samples are presented in Table I. 

The cylindrical samples were further machined to 
final dimensions using a grinding procedure developed 
previously27,28, which ensures fiat ends, end surfaces that 
are perpendicular to the central axis of the cylinder and 
centring of the sample in the test fixtures. For the 
torsional testing the samples were held to the platens of 
a Rheometrics RMS-7200* rheometer using a cyano- 
acrylate adhesive. The cylinders were 1-1.2 cm in diameter 
by 0.7-1.5cm in height. The actual geometries were 
measured using a caliper accurate to 0.0025 cm. The 
RMS-7200 configuration used the standard rotary trans- 
ducer for angular measurements and the 10 000 g cm/2000g 
load cell for torque and normal force measurements. The 
whole is interfaced with a personal computer for data 
acquisition and control. Single-step stress relaxation 
experiments were performed by applying a step in torsion 
and monitoring the torque and normal force responses. 
All data are reported as 131 s isochronal values for the 
torque and normal force. The step time was less than 0.5 s. 

All tests were performed at 24 + I°C. The solvents were 
acetone, methyl ethyl ketone (MEK), ethyl acetate, 
1,2-dichloroethane,  n-decane and benzene, thus covering 
the range from non-solvent to good solvent for natural 
rubber. 

ANALYSIS 
Determination of the elastic contribution to the 
chemical potential 

There is good empirical evidence 15-18 for the validity 
of the Valanis-Lande114 proposition that the elastic free 

* Certain commercial materials and equipment are identified in this 
article to specify the experimental procedures. In no instance does 
such identification imply recommendation or endorsement by the 
National Institute of Standards and Technology or that the materials 
and equipment identified are necessarily the best available for the 
purpose 
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energy function of rubber networks can be expressed as 
a separable function in the principal stretches. The 
assumption that this is true is essential to the analysis of 
the FFR hypothesis that we will use in this paper. 

The Valanis-Lande114 strain energy function can be 
written as follows (equation (3)): 

w(21, 42, 43) = w~ 0-1) + w(22) + w(23) 

where W(2~, 22, 43) is the elastic contribution to the free 
energy of the network and we will refer to the w(21) as 
the Valanis-Landel (VL) function. Importantly, the 
ability to represent successfully the elastic free energy 
term as separable in the stretches provides us with a 
means of obtaining the mechanical response of a network 
in all deformation geometries from a series of experiments 
in a limited number of geometries, e.g. we can describe 
tensile or compression responses from experimental 
results in torsion. The true stress response to a uniaxial 
deformation is, for example, written as~4: 

O'll  --t722=2W'(2)--2-1/2W'(2-1/2) (7) 

where w'(2) = t~w/82 is the derivative of the VL function. 
In addition, we note that often the VL function is 
expressed as: 

w(2) = w x (4) + a In 2 (8) 

where the logarithmic term has created much discussiont 
in the literature, but is not needed in the analysis that 
will follow 8. (See also Appendix.) 

Kearsley and Zapas 29 have shown how to obtain 
w ' ( 2 ) - w ' ( 1 ) / 2  from torsion and normal force measure- 
ments on cylinders of dry rubber. Here we simply write 
their result that: 

WP(1) (+1) 
w'(2) 2 ( 4 2 - 1 ) W ~  W z (9) 

2 2 

where the Wi represent the derivatives of the strain energy 
density function with respect to the ith invariant of the 
deformation tensor. W1 and W2 can be obtained from 
the torque and normal force measurements at different 
angular deformations using the Penn and Kearsley 3° 
scaling law approach. 

An important thing in the understanding of the 
behaviour of rubber is the behaviour near the undeformed 
state. We have argued previously 8'19'2° that in the 
undistorted state the value of w'(2)~= ~ is equal to zero. 
When this is the case, the results of equation (9) can be 
used to obtain the VL function derivative w'(2), which 
appears in the terms for the elastic contribution to the 
chemical potential discussed in the previous section. The 
arguments supporting the contention that w'(1)=0 are 
set forth in the Appendix. 

Calculation of  Zc 

In this analysis we assume that the Frenkel-Flory-  
Rehner hypothesis 1'2 of separability of the mixing and 
elastic contributions to the free energy is correct, that 
the Flory-Huggins expression 6'7 for the mixing contri- 

5" The a ln(212223) term in the Valanis-Landel  type strain energy density 
function is arbitrary and allows one to set w ' (1)=0 in equation (10) 
without loss of generality 13,29.30. On  the other hand,  in many  molecular 
theories T M  1 this term appears explicitly and it may  or may not have 
important  consequences depending on the specific model adopted. It 
is also interesting to note that the log 2 term does not appear explicitly 
in the junct ion constraint model, but  is present implicitly as it appears 
in one limiting case a'12. (See also Appendix.) 

bution to the chemical potential is valid (equation (2)) 
and that equations (3), (4) and (6)-(9) are valid descrip- 
tions of the network elasticity in both the dry and swollen 
states. Then the value of the Flory-Huggins interaction 
parameter for the crosslinked rubber from swelling 
experiments carried out in an excess of solvent can be 
calculated by equating equation (2) with equation (4) 
and solving for Xc: 

RT[In(1 - v2) --]- v 2 + ~(cv 2] : - Vlwt(2s)/22s (10) 

Then: 

Z~ = { - V~w' (2s ) /RT22-  [In(1 - v2) + v2]}/v 2 (11) 

and the variables have been defined previously. 
There are several important assumptions used in this 

analysis, which will be important in considering and 
interpreting our results. First, we have assumed that the 
Frenkel-Flory-Rehner  (FFR) hypothesis L2 is correct. 
Although this is often assumed, we are using it here in 
a way that makes no assumptions about the validity of 
any particular model of rubber elasticity. We do presume, 
as did FFR, that the strain energy of the system in the 
swollen state is described by the same function as that 
which is relevant to the dry state, with differences being 
accounted for by the network (macroscopic) deformation 
alone. This assumption has been supported by recent 
results obtained in this laboratory 19'2°. We further use 
assumptions about the phenomenological form of the 
strain energy density function, i.e. that the Valanis- 
LandeP 4 function describes the dry state elastic properties 
of the network and that its first derivative at zero 
deformation is equal to zero. Finally, we have assumed 
that the Flory-Huggins expression 6'7 is correct and is a 
reasonable representation of the mixing contribution to 
the chemical potential, but that the interaction parameter 
Xc is crosslink-dependent. It is the crosslink dependence 
of Z¢ that we wish to examine. 

RESULTS 

The results from the torque and normal force measure- 
ments as functions of the angle of twist (deformation) on 
the series of natural rubber samples discussed here have 
been reported previously 2°. From the torque and normal 
force responses we were able to determine W 1 and W z 
from the Penn and Kearsley 3° equations and then use 
equation (9) to determine w'(2), keeping in mind that 
w'(1)=0. Typical results* are presented in Figure I as 
w ' ( 2 ) - w ' ( 1 ) / 2  versus 4. These data were used for the 
calculation of the elastic contribution to the chemical 
potential and subsequently the value of Zc from the 
swelling measurements. 

The results of the swelling measurements are presented 
in Table 2, where the degree of swelling as 1/v 2 of each 
sample in each of the solvents is presented. 

From our knowledge of w'(2) and the degree of swelling 
(swelling deformation=2s=v21/3)  we were able to use 

* In instances in which the torsional data did not  cover a sufficient 
range of deformations and the calculations of ~(¢ in the swollen state 
required extrapolation of the values of w'(2)-w'(1)/2, we used the 
Gaylord-Douglas  31 model as empirically fitted to our data  to carry out  
the extrapolations. The form of w'(2) in this case is w'(2) = A(2--  1/2) + 
B(1 - 1/2). As seen by the curves of Figure 1 the model fits the data  
very well. Furthermore,  the extrapolations were not  large, and we found 
little difference between the use of this equation and a simple graphical 
extrapolation by hand 
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Table 2 Degree of swelling, 1/v2, for natural rubber crosslinked with dicumyl peroxide swollen to equilibrium in various solvents 

Solvent (1/1 in cm 3 mol- ') 

Sample Acetone MEK n-Decane Benzene Ethyl acetate 1,2-Dichloroethane 
designation (73.8) (89.8) (195.8) (89.1) (98.2) (80.1) 

APHR 1 1.172 1.739 4.303 6.317 1.898 3.402 
APHR2 1.155 1.621 3.312 4.780 1.754 2.804 
APHR3 1.134 1.543 2.814 3.908 1.661 2.460 
APHR5 1.102 1.411 2.211 2.989 1.504 2.042 
APHR7.5 1.092 1.290 1.818 2.364 1.360 1.755 
APHRI0 1.082 1.317 1.846 2.469 1.379 1.791 
APHR15 1.063 1.174 1.571 1.935 1.233 1.567 

1 .0  

0 . 5  

0 . 0  
0 . 0  1 .0  2 . 0  3.0 4 . 0  5 . 0  

u x 104(mole/cm S) 

Figure 2 Dependence of Xc on crosslink deffsity v for dicumyl- 
peroxide-crosslinked natural rubber swollen in different solvents, as 
indicated 

equat ion (11) to calculate the value of  Zc for each 
rubber-solvent  system. The values of  X¢ were then plotted 
versus crosslink density as shown in Figure 2 and versus 
volume fraction of  rubber as shown in Figure 3. There 
are two impor tan t  features to be noted from these figures. 
First, from Figure 2, the values of  Zc increase linearly as 
the crosslink density increases. Secondly, from Figure 3, 
the value of  Xc is invariably greater than the value for 
the corresponding uncrosslinked rubber  at the same 
volume fraction of rubber. These results are impor tant  
and we discuss them in the following section. 

D I S C U S S I O N  

Crosslink density dependence of Zc in an excess of solvent 
The results described above are for rubber  crosslinked 

in the bulk state and subsequently swollen in an excess 
of  solvent, i.e. at saturation. We make this distinction 
because there is a considerable body  of  literature dealing 
with the swelling activity parameter  (so-called 'dilatational 
modulus ' ) ,  which is obtained from measurements  of the 
activities of the crosslinked and uncrosslinked rubber  
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V 2 
Figure 3 Variation of Z~ and Z with volume fraction of rubber. Data 
points depict Xc values in different solvents as indicated on graph. 
( ) is for limit of miscibility, calculated from equation (11) with 
the elastic term set to zero. The other curves correspond to Z values 
for uncrosslinked rubber reported in the literature and discussed in the 
text: ( - - - - - - )  benzene; ( - - . . - - )  1,2-dichloroethane; ( • ) ethyl 
acetate; ( . . . . . . . .  ) MEK; (- . . . .  ) acetone 

made isopiestically, i.e. at constant  vapour  pressure. 
Al though we see no obvious reason why such measure- 
ments should differ from those reported here, at this point  
we do make a distinction. The dilatational modulus  
measurements  reported in the literature and their impor-  
tance in the discussion of  the dependence of  the F l o r y -  
Huggins interaction parameter  on crosslinking will be 
discussed in the next section. In  this section we limit 
ourselves to a discussion of the results reported above. 

Recalling Figure 2, where the dependence of the 
F lo ry -Huggins  interaction parameter  on the crosslink 
density is depicted, we performed a linear regression to 
equat ion (5) on the data  for each solvent, i.e.: 

Z~=Zo +~qv 

The results of  such an analysis are presented in Table 3. 
An interesting point  to be made in examining the data  
presented in Table 3 is that  the values of  Xo for the good  
solvents approach  the values for the uncrosslinked rubber  
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in the same solvents and at low concentrationst. Further- 
more, Zo in the poor solvent systems is approximately 
equal to the value of X for the uncrosslinked rubber 
in the same solvent at the volume fraction of rubber 
corresponding to the limit of miscibility of the polymer 
and solventt. 

We also found that the data from the linear regression 
followed an equation of more 'universal' form (equation 
(6)): 

( Z o  - Xo) /Zo  = ~ v  

where, as shown in Table 3, we found that ~==l/Xo 
is nearly the same independent of the solvent type. In 
Figure 4 we depict the data in a reduced plot of (X~-Xo)/;to 
versus v, which should collapse the data to a single line 
if equation (6) were strictly valid. Although the results 
are suggestive, the experimental uncertainty is great 
enough that further work needs to be done to determine 
how 'universal' this behaviour is. 

An important possibility if equation (6) is valid was 
suggested by J. F. Douglas a5 of this laboratory, i.e. that 
there exists a normalization parameter which would 
make ~ in equation (6) dimensionless. A possibility that 
we suggested previously 8 is that the normalization 
parameter is the critical crosslink density v*, which is 
related to, for example, the gel point, and we wrote the 

Table 3 Values ~ of Xo, ~ and ~ for crosslinked natural rubber in 
different solvents 

Solvent Xo ~q (cmS mo1-1) ct (cm3 mo1-1) 

Acetone 1.43 2179 1524 
MEK 0.823 1316 1600 
Ethyl acetate 0.777 1096 1411 
1,2-Dichloroethane 0.600 679 1131 
n-Decane 0.472 819 1735 
Benzene 0.445 569 1279 

Values determined from least-squares fit of data to equation of the 
form X¢ = go + ~t;to v and then (X~ - Xo)/Z0 = cry 
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Figure 4 Reduced value of X as (Xc-Xo)/Zo vs. v for natural  rubber 
networks swollen to equilibrium in different solvents, as indicated 

t For acetone, ethyl acetate and M E K,  we took values of Z for the 
uncrosslinked rubber from Booth et al. 32. For the natural rubber-  
benzene system, X has been reported to be independent of v 2, and here 
we take the value of X=0.41 reported by Gee 33. For the 1,2- 
dichloroethane system, we took the values reported by Huggins 34. We 
did not  find any X values for the n-decane-natural  rubber system that 
were obtained using uncrosslinked rubber 

following expression: 

(~(c - -  ~(O)/ZO --'~ (X2P/V* (12) 

At this point this is merely speculative and we are 
currently performing experiments to explore this possi- 
bility:~. The important point of this section has been to 
present the evidence that the Flory-Huggins interaction 
parameter depends on crosslink density. In the next 
section we examine the evidence available which shows 
that Z¢ is different in the crosslinked and uncrosslinked 
rubbers from considerations of the swelling activity 
parameter ('dilatational modulus'). 

Crosslink density dependence of Xc at zero swelling: 
the swelling activity parameter§ 

There have been several experimental studies of the 
swelling activity parameter 1°'11,37,3s, all of which can be 
interpreted to show that the Flory-Huggins X parameter 
is different in the crosslinked and uncrosslinked rubbers. 
Furthermore, the studies show that Z¢-Xu ~0.02 at the 
limit of zero swelling, which is similar to the values 
obtained in this study for similar solvent quality and 
degree of crosslinking but in an excess of solvent. 

The swelling activity parameter S is defined in terms 
of the activities of the polymer-solvent systems in 
the crosslinked and uncrosslinked states, ac and a,, 
respectively. S is written as follows a'a L~2: 

S = 2 s ln(ac/au) (13) 

where we remind the reader that 2s is the swelling 
deformation. The activities in the uncrosslinked and 
crosslinked rubbers are written as: 

ln(au) = [In(1 - 02) -F v 2 -'F- Xu v2"] (14) 

ln(ac) = [In(1 - rE) + v2 + Xcv 2] + V~w'(A,)/R T22 (15) 

where we recognize the Flory-Huggins expression 6'7 for 
the mixing contribution to the activities of both crosslinked 
and uncrosslinked rubbers and the elastic term for the 
crosslinked rubber. In past analyses of swelling behaviour 
it has been assumed that Xc=Xu, in which case we find 
that S is simply a measure of the elastic term, i.e.: 

S = Vzw'(2s)/RT2 ~ (16) 

If, however, one accepts the results presented in this 
paper, X¢ does not equal X, and we should write*: 

S = (X~- Xu)2~v 2 + Vaw'(2~)/RT2 s (17) 

From the prior arguments (see earlier footnote) that 
at zero (swelling) deformation (4,= 1) w'(1)=0, if X¢ is 
equal to Xu, then S is equal to zero at 4, = 1. We know 

J/It is well known that  the elastic modulus  and degree of swelling of 
the network vary with the molecular weight Mp of the polymer prior 
to crosslinking 36. Furthermore,  the number  of 'crossl inks required 
to form a continuous network should change with Mp. Therefore, 
changing the molecular weight prior to crosslinking, but introducing 
a constant  number  of crosslinks should provide a test of equation (12) 

§ Wha t  we refer to here as the swelling activity parameter has been 
called the 'swelling modulus '  or the 'dilatational modulus '  in the 
literature. Because it is a dimensionless thermodynamic parameter and 
is definitely not a modulus  in the sense of being the second derivative 
of the free energy function, we find the terms dilatational or  swelling 
modulus  confusing and suggest using swelling activity parameter as an 
alternative, which is clearer. We use this term throughout  the paper 
* Richard J. Gaylord of the University of Illinois first pointed out  to 
us in March 1988 that Xc does not  necessarily equal Z, and equation 
(17) is the result 39 
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Figure 5 T h e r m o d y n a m i c  pa rame te r s  vs. swelling de fo rma t ion  (see 
text for discussion) 

of no experimental study in which this is the case and, 
in fact, the data indicate quite dramatically that Z¢ > X,. 
In Figure 5 we depict the data of Gee et al. 11 showing 
that S does not go through zero at 2 s = 1 (curve labelled 
2, ln(ao/a,)~c.etal.). We also show several other curves in 
this figure for comparison. The curve labelled (X¢-X,)2~- 5 
is the mixing contribution due to the difference between 
the Flory-Huggins interaction parameters in the cross- 
linked and uncrosslinked rubbers. There are two curves 
labelled Vlw'(As)/RTAs which represent the elastic contri- 
bution to the swelling activity parameter calculated in 
two ways. The full curve with the full circles is the value 
of VIw'(2s)/RT2 s for the 5phr  dicumyl-peroxide-cross- 
linked rubber used in this study and calculated assuming 
that w'(2) for the swollen rubber is the same function as 
for the dry rubber. The full line without points gives the 
values of Vlw'(2s)RT2 s obtained by subtracting the 
mixing contribution (X¢-X,)2~-5 from the data of Gee 
et al. for S =  2 s ln(aJa,). Obviously the two curves are 
significantly different--something that we discuss below. 
Finally, the curve labelled 2 s ln(ao/a,)¢~o is the sum of 
the mixing contribution and the elastic contribution 
based on the assumption that the dry state and swollen 
state elasticities are the same. This is the prediction from 
equation (7). 

A brief discussion of Figure 5 is important here. 
Because 2 s ln(ac/a,)¢~¢ does not agree with the measured 
values of Gee et al. ~ 1, it suggests that the information in 
equation (7) is inadequate to explain the behaviour of 
the swelling activity parameter. There are several possible 
explanations. The first is that the FFR additivity and 
separability hypothesis is incorrect and there is some sort 
of coupling between the mixing and elastic contributions 
to the free energy. Such coupling has been argued by 
Neuberger and Eichinger 37 based solely on measure- 
ments of the swelling activity parameter and assuming 
that ~ = X,. However, we recently showed 19'2° that the 
elastic contribution to the free energy function of the dry 
rubber is equal to that of the swollen rubber, which 
implies that such coupling occurs only in the sense that 
the free energy of mixing is altered by the network 
deformations--a possibility suggested by Deloche and 
Samulski 4°. One other possibility arises and that is that 
the coefficient a of the logarithmic term in the free energy 
function is important and w'(1)50.  However, the impli- 
cation is that either w'(1) or a varies with the solvent 
and/or the swelling deformation. This prospect is dis- 

turbing, but experiments are currently under way to 
assess such a possibility. 

As a penultimate comment, none of the prior works 
attempted to study systematically the crosslink depend- 
ence of Z~ as we did above. Furthermore, because 
the swelling activity parameter is not currently under- 
stood 12'2°'37'4°, it is unclear what the exact relationship 
is between the value of gc obtained from the value of S 
evaluated at 2s = 1 and that obtained in our study in an 
excess of solvent. In any event, it is clear that under the 
present assumptions •¢ ~ X, and the value of X~- ~, is of 
order 0.03 for good solvent systems at moderate crosslink 
densities. It increases as crosslink density increases or 
solvent quality becomes poorer. 

Finally, we wish to comment that the crosslink 
dependence of X was also observed in experiments by 
Gnanou et al. 41 on end-linked poly(ethylene oxide) 
(PEO) networks swollen in water and dioxane. Gnanou 
et al. assumed a 'phantom' network model to calculate 
Xc, but the 'phantom' modulus used in the calculation 
was that obtained by compression measurements on the 
swollen gel. Given these assumptions their data analysis 
needs to be viewed with caution, but does give some 
interesting results, as shown in Figure 6, where we plot 
their data as Xc versus v. A least-squares fit of their data 
to equation (5) (or (6)) results in values of ~ that are 
approximately the same for the two solvents (~= 1089 
for H 2 0  and 1150 cm 3 mol-  1 for dioxane). Further, these 
values do not differ greatly from those which we report 
in this paper for the natural rubber system (Table 3). 
This is probably fortuitous given the vastly different 
nature of the procedures, network chemistries, etc., in 
the two studies, but merits further examination in the 
future. In the next section we examine the apparent linear 
crosslink density dependence of ~ within the context of 
lattice model calculations of Freed and Pesci 23. 

Comparison of results with the lattice model 
calculations of Freed and Pesci 

Freed et al. 21-25 have recently treated the problem of 
the crosslink dependence of ;( by evaluating corrections 
to the Flory-Huggins approximation in a systematic 
expansion in a lattice model. As usual, this treatment has 
each lattice site occupied by a monomer or a solvent 
molecule in which there are van der Waals energies 
between non-bonded and nearest neighbours. Bond 
correlations are calculated in a cluster expansion of the 
mixing energy in inverse powers of the lattice coordination 
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Figure 6 Variation of X¢ with crosslink density for PEO-water and 
PEO~lioxane systems (data from Gnanou et al. 41) 
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number Z. The lattice coordination number  is a measure 
of the ' range'  of the interaction, with the mean-field 
theory corresponding to Z ~  oo. Freed et al. z~-25 have 
extended the calculations to the properties of linear and 
branched chains as well as of treating solvent molecules 
and monomers that have internal structure and, therefore, 
cover several lattice sites. 

In the case of a tetrafunctional network swollen in a 
solvent made up of molecules having N, flexible bonds 
and occupying N~ + 1 lattice sites, Freed and Pesci z3 find 
that the effective interaction parameter as defined through 
the chemical potential is given by: 

(g¢ -- Zo)/go = {(24/Z2) + [16NJZ3sdpp(N, + 1 )] 

+O(Z-4) }O~ (18) 

where ~v = D2 is the volume fraction of polymer, ~b~ is the 
volume fraction of crosslinks, e = (epp + ess-  2eps)/kT is the 
dimensionless interaction parameter  and the subscripts 
p and s refer to polymer and solvent respectively. 

As noted by Freed and Pesci 23, there are difficulties 
in quantitative comparisons between equation (19) and 
the experimental results presented above because the 
parameters Z, e, Ns and ~b~ in the lattice model are not 
readily related to the actual experimental situation. 
Furthermore,  we note immediately that equation (19) 
predicts a rubber volume fraction (q~p) dependence of X¢, 
which was not observed explicitly in our data. These 
points are dealt with below. 

In order to estimate the values of Z, e, N~ and qS~ that 
are relevant to the actual experimental situation, we first 
assume that e ~ Z  -~, as did Freed and Pesci 23. The 
comparison of the lattice model crosslink volume fraction 
~b~ with the experimental crosslink density v can be made 
by using reasonable estimates of how many lattice sites 
are taken per crosslink point. Freed and Pesci 23 assumed 
that each crosslink point was formed of two monomers  
and that the junction site is composed of 2y monomers.  
The molecular weight for isoprene is 58 so that the value 
of ~b~ equals 116yv cm 3 m o l -  ~. 

We then carried out a least-squares analysis of our 
data to equation (19) for lattice coordination values of 
Z = 4, 6 and 8 and for the values of N s corresponding to 
the number of flexible bonds estimated for each solvent 
based on its chemical structure. Table 4 shows that while 
the values of y obtained are not independent of solvent 
they are not unreasonable except perhaps for acetone 
and Z = 8 .  Since 2y is the number  of monomers  per 
crosslink junction, if Z = 4 for the tetrafunctional network 
the junction reaches two monomer  units along each 
branch of the network. When Z = 16 then it reaches eight, 
which may be an overestimate. Of  course, assigning 
physical meaning to the parameters of the Freed-Pesci  23 
lattice model may be dangerous, although the data are 
well described by it and it allows an explanation of the 
apparent linear dependence of gc on the crosslink density 
(particularly when the degree of swelling is not extreme). 
Certainly further work is required to establish if other 
network or solvent parameters are important  in the 
crosslink dependence of Z- A final point here is that the 
volume fraction dependence of Z¢ in the Freed and Pesci 23 
model does not greatly influence the results that we 
obtained, possibly because, for a given solvent, the range 
of volume fractions obtained upon swelling was not very 
large. 

Table 4 Values of Xo and y determined from least-squares analysis of 
equation (19) for crosslink dependence of ~c 

Solvent Fixed value of Ns a Xo Y 

Z=4 
Acetone 2 1.44 8.4 
MEK 3 0.81 4.8 
Ethyl acetate 4 0.77 3.8 
n-Decane 9 0.45 2.5 
1,2-Dichloroethane 1 0.60 2.6 
Benzene 0 0.45 3.2 

Z=6 
Acetone 2 1.44 16.4 
MEK 3 0.81 9.1 
Ethyl acetate 4 0.77 7.1 
n-Decane 9 0.44 4.6 
1,2-Dichloroethane 1 0.59 5.0 
Benzene 0 0.45 7.3 

Z=8 
Acetone 2 1.44 29.2 
MEK 3 0.81 16.1 
Ethyl acetate 4 0.77 12.7 
n-Decane 9 0.44 8.2 
1,2-Dichloroethane 1 0.59 8.8 
Benzene 0 0.45 12.9 

a c - c  and C-O bonds in the chain backbone were counted as flexible. 
The benzene ring was taken as having no flexible bonds 

S U M M A R Y  

Mechanical and swelling measurements were carried out 
on a series of dicumyl-peroxide-crosslinked natural 
rubbers. By using the Valanis-LandeP 4 form of strain 
energy function we were able to obviate the use of any 
molecular model in the description of the elastic contri- 
bution to the free energy of the network. Then, assuming 
that the dry state properties and the swollen state 
properties are described by the same strain energy 
function, that the value of the first derivative of the strain 
energy function is zero at zero deformation and that 
the Flory-Huggins  expression 6'7 describes the thermo- 
dynamics of mixing, we were able to calculate an effective 
value of the Flory-Huggins  interaction parameter  for the 
crosslinked networks (Zc)- We found that the dependence 
of ;~c on crosslink density was well represented by a linear 
function, which could be written as (;t~-;(o)/~o=~V, 
where we found that go was near the dilute-solution X 
for the uncrosslinked rubber in good solvents or the Z 
value at the limit of miscibility for poor  or non-solvents. 
The value of ~ was found to be almost independent of 
the solvent system studied. These results were compared 
with the recent lattice model calculations of Freed and 
Pesci 23. The results appear  to be in qualitative agreement 
with the model. 

We also considered other evidence in the literature that 
Z is a function of crosslink density. Gnanou  et al. 41 
obtained data for Xo on PEO networks using an approach 
that is somewhat like that used here. When we analysed 
the crosslink dependence of their X~ values we found 
nearly the same behaviour as that observed for the 
natural rubber systems. In addition, reported evidence 
based on measurements of the swelling activity parameter  
is presented which supports the contention that ~ differs 
from the ~ value of the uncrosslinked rubber. Within the 
framework of our assumptions and knowing that the 
mechanical response in the dry and swollen systems is 
described by the same strain energy density function19.20, 
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we concluded that Zc # gu and that either the free energy 
of mixing is affected by network deformation or the 
logarithmic term in the elastic contribution to the free 
energy varies with solvent type. This latter speculation 
appears unsatisfactory. 
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APPENDIX 

The strain energy function near the undistorted state 
Kearsley and Zapas 29 have discussed the behaviour of 

the Valanis-Landel ~4 form of strain energy density 
function near the undistorted state (configuration). They 
do not, however, consider the value of the first derivative 
explicitly, merely noting as did Valanis and Lande114 that 
w'(1) can be set equal to zero without loss of generality. 
While this is adequate for the description of the 
mechanical properties, it becomes an assumption when 
dealing with the swelling of the rubber. Here we argue 
that w'(1)=0 for physical reasons consistent with the 
Frankel-Flory-Rehner hypothesis 1'2. 

First we rewrite the VL function as was done in 
equation (3): 

W(2~, 22, 23) = w(,~l) + w(22) + w(~,3) 

Because the FFR hypothesis implies that the strain 
energy density function is the same in the dry and swollen 
rubber, we argue that the function should be elastically 
stable for isotropic deformations as well as for volume- 
conserving ones. 

The condition that W be at a (local) extremum in the 
function is that the total differential be equal to zero 42'43: 

dW(21, 22, 23)= w'(2x) d21 + w'(),2) d22 + wt(,~3) d23 = 0 

(A.1) 

where w'(2i)=dw/d2i=dw().i)/d2/. In the undistorted 
c o n f i g u r a t i o n ,  ~ ,1= ,~ .2=23=1  and it is obvious that 
w'(1)=0 is a solution to (A.1). It is not obvious that this 
is the only solution. 

Another way of looking at the problem is to take 
equation (A. 1) and divide each side by d21, e.g. d21. Then 
we find: 

0 = dW/d21  = w'(21) + Wt()~2) d22/d21 + Wt(,~3) d23/d21 

(A.2) 

and one arrives at three equations for each 2/. 
Obviously stability is maintained at zero deformation 

when w'(1)=0. However, for the volume-conserving 
deformation (i.e. for an incompressible material), 
)~1,~.2,~3 = l ,  which makes the 2 i dependent. Then one can 
show using the method of Lagrange multipliers 43 that 
elastic stability is always maintained independent of the 
value of w'(1). Thus, although w'(1)=0 is a sufficient 

condition for stability, it is not necessary in the case of 
the incompressible material. 

However, in swelling we do not have a volume- 
conserving deformation. Yet the FFR hypothesis implies 
that the elastic strain energy function relevant to both 
mechanical and swelling problems is the same. Therefore, 
we contend that one should consider the stability of the 
strain energy function for non-volume-conserving defor- 
mations. In particular, when 2 1 = 2 2 = , ~ 3 = , ~ . s ,  for the 
isotropic (swelling) deformations, equation (A.2) becomes 

0 = d W/d2, = 3w'(2,) (A.3) 

and it is obvious that stability at 2 s = 1 requires w'(1) = 0. 
The consequences of this are quite important. In the 

determination of the Valanis-Lande114 function deriv- 
atives from the mechanical measurements we found that 
we could only determine w'(2)-w'(1)/2. When w'(1)=0 
we find that we have actually determined w'(2). Also, this 
sheds some light on the a 1n(212223) term which appears 
arbitrarily in the original Valanis-Landel ~4 paper and 
also appears in many molecular theories. Take the VL 
function in equation (3) and write w(2~) = wl (2i) + a In 2 t. 
Upon differentiation with respect to 2~ we get w'(2~)= 
w~(2i)+a/2/. But at 2i= 1 we have from the above that 
w'(1 ) = 0. This implies that w] ( 1 ) = - a, which is necessary 
to calculate Zo from equation (10). 

The argument for equating w'(1)=0 is plausible, but 
needs to be tested independently. It may be testable by 
combined mechanical and scattering measurements on 
labelled dry networks, since the shear modulus is equal 
to twice the sum of the first and second derivatives of 
the strain energy density function and the scattering 
measurements at zero angle give the second derivative 
only. This suggests further experiments. 
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